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When do star clusters have unphysical distribution functions? 
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Abstract. It is sometimes impossible to construct a relativistic star cluster with the same 
structure as a given relativistic fluid sphere. The reason is the unphysical nature of the 
distribution function which is sometimes negative in part of phase-space or sometimes 
contains non-integrable singularities. A simple test is derived that can be applied to a given 
fluid sphere to provide a set of sufficient conditions for the distribution function to be 
unphysical. The test is applied to some fluid spheres and clusters that have been studied in 
the literature. 

1. Introduction 

A technique used in the past to construct models of static spherical relativistic star 
clusters with isotropic velocity distributions was to take a known solution of the Einstein 
field equations, representing a finite fluid sphere with isotropic pressure, and calculate 
the isotropic distribution function that gives rise to a cluster that has the same structure 
as the fluid sphere. The cluster itself was then obtained by solving the field equations. 
An isotropic distribution function is one that depends only on the conserved energies of 
the stars along their trajectories, and the stellar rest masses. The mathematical 
prescription for calculating this distribution function was given by Fackerell (1968). 
Although the resulting cluster has the same pressure p and density of mass-energy p as 
the fluid sphere, and the same coordinate radius and total mass-energy, it has in general 
a different rest-mass density and binding energy. This technique was used by Fackerell 
(1968,1970) and Ipser (1969) to construct various clusters with polytropic structures. 

A problem that can arise with the above process is that there is no guarantee that 
there exists a physically acceptable isotropic distribution function for a given fluid 
sphere. A physically acceptable distribution function is positive throughout phase- 
space and has at most integrable singularities. (See § 2 for further discussion on this 
point.) For example, Fackerell(l968) found the distribution function corresponding to 
the Schwarzschild interior solution to be negative over part of phase-space. 

It follows automatically that if no physically acceptable isotropic distribution 
function exists for a particular solution of the field equations with isotropic pressure, 
then neither does there exist an anisotropic distribution function, i.e. one that depends 
on the angular momenta of the stars as well as their energies and rest masses. This 
follows because an anisotropic distribution function always gives rise to a cluster with 
anisotropic pressure. 

1897 
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The purpose of this paper is to derive a means by which we may distinguish those 
solutions of the field equations that give rise to unphysical distribution functions, 
without first calculating the distribution function itself. We derive here a simple test 
that can be applied to the behaviour of the pressure and density of mass-energy near the 
surface of the fluid sphere. If the test is satisfied, it provides a sufficient (although not 
necessary) condition for the corresponding distribution function to be unphysical. 

The conditions on p and p are derived in 8 2, while 0 3 applies the results to some 
clusters that have been studied in the literature. 

2. Sufficient conditions for unphysical distribution functions 

We use the static spherical line element 

ds’=e’ dt2-d* dr2-rr2(d62+sin26 d+’) 

in Schwarzschild coordinates. For spherical clusters with isotropic pressure, the density 
of stars in phase-space is given by a distribution function of two variables F(m, E )  where 
m is the rest mass of a typical star in the cluster and E is the conserved energy along a 
stellar trajectory as measured at infinity (Fackerell 1968). However, as far as the 
analysis in this paper is concerned, it is only necessary to consider a distribution function 
of a single variable x = E Z / m 2 p .  This is because all physical quantities in an isotropic 
cluster can be expressed in terms of the following mass-weighted distribution function 
(Fackerell 1968): 

m 

, y (x )  =  IT lo F(m, mp1’’x1/’)m4 dm. 

In terms of ,y(x),  p and p can be expressed as (Fackerell 1970) 
1 

p = y -’ ,y (x )x- ’ / ’ (x  - Y ) ~ / ’  dx 

and 
r l  

p = 3y-’ J , y ( x ) ~ ’ ~ ~ ( x  -y)’/’dx. 
Y 

Here y = e”“’/P, where p = e”‘R’is the value of e” at the surface of the cluster r = R. To 
calculate all values of p and p in the range pc 3 p  3 0 and pc 3 p 3 0 where p c  and pc are 
the central values of p and p respectively, x ranges over the values y C s  x s 1. Here 
yc = e””/P, and the upper limit on x is 1 because the maximum energy that a star can 
have in a bounded cluster is E,,, = mP1I2. This guarantees that no stars are found at 
r > R (Ipser 1969). 

2.1. Conditions on the pressure 

When the pressure p is known as a function of y ,  equation (1) can be solved for ~ ( x )  in 
terms of x .  Defining G(y)= y2p(y), the solution is (Fackerell 1968) 

, y (x )=  (2/3~r)x”’(l -x)- ’”(  G’(l)%(l -x)+2G”(l)(l - x )  
1 

- 2(  1 -x ) ’ / ’  1 G’”(y)(y - x ) - ’ / ~  dy). 
J x  / 

In equation (2) (and in the following) a prime denotes differentiation with respect to y. 
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In addition, (B(1 - x )  is a generalised function defined by Lighthill (1958) as 

%(1-x)=2(1-X)3/2-[(1-X)-1/2H(1-X)]  d 
dx 

where H(l - x )  is the Heaviside function. 
Although it is not possible to completely analyse x ( x )  in equation ( 2 )  for arbitrary 

values of p(y), it is possible to determine the behaviour of x ( x )  near the surface of the 
cluster, i.e. for x G 1.  The reason is that all clusters of physical interest have surfaces 
that are regular, and thus the pressure admits a Taylor expansion near the surface of the 
form 

m 

p ( y ) =  c a“(1-y)”‘“. 
n = l  

( 3 )  

Here the a, and s are constants with al  > 0 to guarantee p > 0 as y + 1, and s B 0 to 
guarantee p ( l ) =  0. 

It is now a simple matter to calculate the corresponding expansion of x ( x )  when p is 
given by the series ( 3 ) .  The nature of the expression ( 2 )  for x ( x )  does, however, 
necessitate us considering several distinct values of s separately. 

2.1.1. s = 0. In this case it follows from equation ( 2 )  that 

x ( x ) =  (2/3.rr)x112(1 -x,-3/2[  - a l % ( l  - x ) - 4 ( 2 a l  -a2)(l - x ) + 2 4 ( a 1 - 2 a * ) ( 1  -x)2  

1 “  n! 4 ( n  + 1 )  
+ 6 4 ~ 2 ( 1 - ~ ) ~ + 2  n = 3  E 2” ( 2 n - 5 ) ! !  ( 1  - x  y ( 1 - - -  2 n - 3  (1 - . x )  

( 1  - x 12) a n ] .  
4 ( n  + l ) ( n  + 2 )  

( 2 n  - 1)(2n - 3 )  
+ 

Since (B( 1 - x )  = 1 when x < 1, x ( x )  thus has the following behaviour for x s 1 : 

X ( X ) - - ( ~ / ~ T ) X ’ / ~ ( ~  - x ) - ~ / ’ u ~  +0((1 - x ) - ” ~ )  

i.e. x ( x ) <  0 since al > 0. This rules out the value s = 0 which from equation ( 3 )  
corresponds to a finite value of p ’ ( 1 ) .  

2.1.2. (3 < s < 1. It follows from equation ( 3 )  that p ” ( y )  is infinite at y = 1,  with the 
result that G ” ( 1 )  is infinite. Consequently x ( x )  is infinite for all values of x in the range 
y , < x <  1 .  Note that the term 2 G f ’ ( 1 ) ( 1 - x )  in equation ( 2 )  cannot be removed by 
performing an integration by parts on the integral because the term (y - x)-l’* in the 
integrand is meaningless at y = x .  Since the physical quantities associated with the 
cluster p ,  p ,  and the density of rest-mass energy PO, are all obtained as integrals over the 
distribution function, it follows that x ( x )  can contain at most isolated integrable 
singularities such as delta functions. Since ~ ( x )  in this case is infinite over an extended 
range of x ,  the values 0 < s < 1 are also ruled out. As mentioned above, this corres- 
ponds to an infinite value for p ” ( 1 ) .  
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2.1.3. s = 1. Here G’( l )=  0 and G”( l )=  2ul so that ~ ( x )  does not involve a general- 
ised function. The relevant expression for ~ ( x )  is 

X ( X  ) = (2/3 T ) X  ‘I2( 1 - x)-~/ ’  1( 1 - X )  - 4 8 ~  1( 1 - x )’ + 64u1( 1 - x)’ 
14. 

4(n + 2) 
(1 - X I  

+ f 2” (n+1)! 
n=2 (2n-3)!! 

4(n + 2)(n + 3) 
(2n - 1)(2n + 1) 

+ 

Thus for x d 1: 

x(x)-(8/3.rr)x1/2(1 --x)-1/2u1 + 0 ( ( 1  -x)1’2)>o. 

The value s = 1 is therefore not ruled out by the behaviour of x ( x )  near the surface. 
When s = 1, p’( l )= 0, and p”(1) is finite. 

2.1.4. s >  1. In this last case both G’(1)=0 and G”(1)=0 with the result that 

(1 - X ) S + n - S ’ 2  
4 -1/2 1/2 U s + n + 1 )  
3 n = l  r ( s+n-$ )  

4(s + n + 1) (1 - x ) +  
(2s+2n-3)  

x ( x ) = - . r r  x f 
X j l -  

4(s + n  + l)(s + n + 2) 
(2s + 2n - 1)(2s +2n - 3) 

It is readily seen that for x d 1, ~ ( x )  has the behaviour 

and hence the values s > O  are not ruled out either. For s > 1 both p’(1) = 0 and 

The above conditions on the derivatives of p with respect to y at the surface also 
apply to the derivatives with respect to r. This follows from the field equations which 
give 

p”(1) = 0. 

-==-(l-F) dp 2M 2 M  -l p’(1) 
dr R 2  

and 

at the surface. Here M is the total mass-energy of the configuration. 

2.2. Conditions on the muss-energy density 

It is of interest to calculate the behaviour of p at the surface in the four cases discussed in 
9 2.1. This is accomplished by using the relation 

P(Y 1 = - P(Y 1- 2YP’(Y 1. (4) 
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It follows immediately from equations (3) and (4) that p(y  ) admits the expansion 

so that the dominant term is 

p (y - 2a1(s + 1 )(I - Y )'. (5  ) 

Consequently, in the two cases ruled out before (00 2.1.1, 2), when s = 0, p is finite at 
the surface, and when 0 < s C 1, p has an infinite first derivative at the surface. For the 
smallest allowed value of s, namely s = 1, p has a finite first derivative at y = 1. 

3. Applications 

We apply the results of § 2 to some clusters that have been studied in the literature. 

3.1. Polytropic clusters 

The structure and dynamic stability of polytropic clusters was studied by Ipser (1969) 
and Fackerell (1970). They are clusters in which p and p are related by the polytropic 
equations 

(6)  p = ff&"+l 

where a, T ,  n, and r4 are constants, and O(r)  is a dimensionless function of the radial 
variable (Tooper 1965). When equations (6) and (7) are satisfied, p is given in terms of y 
by 

where y4 = I'4/(I'4- 1) (Ipser 1969). If we rewrite equation (8) in the form 

where ( y 4 / ( 2 n  +2)), denotes Pochhammer's symbol, we see immediately that s = n, and 
al  = 7 / [ a n ( 2 n  +2)"+']. As a result, only polytropes with n 2 1 can have isotropic 
distribution functions. 

3.2. Das-Narlikar clusters 

Das and Narlikar (1975) studied the central redshifts of core-envelope configurations 
using the method of Bondi (1964). One of their aims was to see if the redshifts of 
quasars could arise in part from the central redshifts of massive star clusters. However, 
as Das (1976) discovered when he calculated the distribution function, a star cluster 
model was not possible for these configurations because the distribution function was 
always negative over part of phase-space. This could have been predicted a priori using 
the results of the present paper. 
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The configurations studied by Das and Narlikar consist of an isothermal core 
surrounded by an adiabatically stable envelope with a finite value of p at the surface. 
Since equation (5) then implies s = 0, it follows that x ( x ) C  0 for x d 1. Alternatively, 
the same conclusion is reached by examining the expression for p ,  which in the envelope 
is 

Here n is a constant and p s  is the value of p at the surface (Das and Narlikar 1975). 
Since this last expression can be written as 

it follows again that s = 0. 

4. Conclusions and discussion 

The results of the calculations in Q 2 may be summarised as follows. Take a given finite 
relativistic fluid sphere with isotropic pressure and the following conditions satisfied at 
the surface r = R .  The first derivative of the pressure with respect to r is finite or the 
second derivative is infinite, and equivalently the density of mass-energy is finite or its 
first derivative is infinite. If these conditions are satisfied there does not exist a star 
cluster with the same pressure and density as the fluid sphere because the isotropic 
distribution function is necessarily negative in part of phase-space, or infinite on all of 
phase-space. Conversely, in order for there to exist a corresponding star cluster, i t  is 
necessary for the pressure to vanish quickly enough at the surface to enable its first 
derivative to vanish there also, and therefore the density must have at most a finite first 
derivative at the surface. 

When the density is finite at the surface the distribution function is negative near 
the surface for x G 1, as seen in 0 2.1.1. This is the case for the n = 0 polytropes and the 
Das-Narlikar models discussed in 8 3.  A question that arises is why does a physically 
acceptable isotro; ic distribution function find it impossible to produce a density 
distribution that drops abruptly to zero at the surface from some finite value? The 
answer probably lies in the fact that in an isotropic cluster there is no preferred direction 
for the stellar velocities. This means that (loosely speaking) equal numbers of stars 
move in all directions at all points inside the cluster including points just below and at 
the surface. It is probably this fact that prevents a finite discontinuity occurring in the 
density at the surface, and more generally prevents the density (and pressure) from 
vanishing there too rapidly. 

In contrast, if all the stars move in circular orbits as they do, for example, in the 
clusters considered by Einstein (1939), there is no reason why the density (and 
tangential pressure) cannot be finite at the surface. However, these clusters with purely 
circular orbits exhibit the most extreme form of anisotropy and it would be of interest to 
examine the degree of anisotropy required for a finite density at the surface to be 
generated by a physically acceptable distribution function. 

In conclusion, it should be emphasised that the conditions derived in Q 2 are not 
necessary for the occurrence of unphysical distribution functions. The distribution 
function can still be negative in some regions of phase-space for clusters which have 
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s 5 1. Fackerell (1968) found this to be so for polytropic clusters satisfying the power 
law equation of state p = kp , where k and n are constants (Tooper 1964). For each 
value of n that Fackerell studied in the range 1.0 S n S 3.0, ~ ( x )  was negative for some 
values of n in the range y c < x  < 1, although it was always the case that x ( x ) > O  when 
x s 1, since s = n for these clusters. 

l + l / n  
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